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ABSTRACT
= A variational principle and a finite element discretization technique were used to

derive the dynamic equations for a high speed rotating flexible beam-mass system embedded
with piezo-electric materials. The dynamic equation thus obtained allows the development
of finite element models which accommodate both of the original structural element and
the piezoclectric clement. The solutions of finite clement models provide system dynamics
needed to design a sensing system. The characterization of gyroscopic cffect and damping
capacity of smart rotating devices are addressed. Several simulation examples are presented
to validate the analytical solution,

Alll w

c LU

Cl

INTRODUCTION

Structural monitoring and control using smart sensing materiols has become of
importance in recent years due to the rapid development of large flexible structures and
flexible mechanical systems. These materials and structures have their own sensing,
actuating, tuning, controlling and computational abilities (Gandhi and Thomas, 1989).
Typically, smart materials and structures are distributed-parameter systems operating
under a variety of service conditions and having a theoretically infinite number of vibration
modes. Current design practice is to model the system with a finite number of modes and
to design a sensing system using lumped parameter approach. "Truncating” the model may
Iead to performance trade-ofT when designing a control system for distributed parameter
systems. Lumped parameter approach is generally acceptable for sensing applications due
to its nature of simplicity and ease of implementation. Although significant progress has
been made in the recent past in the development of smart materials and structures
featuring piezo-electric materianls (Bailey and Iubbard, 1985; Plump ct.al, 1987, Crawley,
19887), shape memory alloys (Miwn, 1985; Yaeger, 1984; Rogers and Robertshaw, 1988),
electro-rheological Muids (Gandhi et al, 1989; Chui et al, 198%; Gandhi ct ol, 1989), and
optical fibers (Morikawa, 1985; Rogowski, 1988), very few work have been done to
characterize the dynamic behaviors of these devices, especially when it is used for high-

speed applications.
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Emphasis is placed on the accurate maodeling and characterization of structural
parameters of sensing devices for flexible structures. The analysis of a beam attached to
a rotating base is a subject of interest to many researchers because numerous structural
configurations such as spinning satcllites (Laurenson, 1976; Kane et al., 1987) and flexible
robots (Cannon and Schmitz, 1984; Mitchel} and Bruch, 1988; Yang and Donath, 1988) fall
into this category. The analysis of these rotating dynamic structures with payloads is quite
different from those of stationary structures due to the inertia of gyroscopic eflect at high
rotating speeds.

Piezoelectric materials are media which develop mechanical strain when subjected
to an electrical field, or conversely, they develop an electrical ficld when subjected to
mechanical deformation. Their inherent high power-to-weight ratio makes them ideal
candidates for embedding piczoelectric materials in traditional structures for vibration
sensing and control. Crawley and de Luis (1987) studicd the effect of a beam with bonded
piezoelectric sensors. Plump et al. (1987) used a piezoelectric film to enhance the damping
ratio of a cantilever beam, Tzou applied a piezoelectric film as an active vibration in a
flexible structure (1987) and an active vibration isolator and exciter (1989). This paper
focuses on the development of analytical models for dynamic characterization of a high-
speed rotating flexible beam-mass system with embedded sensing system. The design of
such a sensing system featuring piezoclectric materials js addressed. Several simulation
examples are presented to validate the analytical solutions.

DESIGN AND ANALYSIS
Basic Assumptions and Coordinate Systems

To derive a simple yet effective sensing model for the physical system of interest,
several assumptions are imposed here, namely:

(1) Large Overall Rigid-Body Displacements with Small Elastic Deformations: This
assumption is valid for a mechanical system rolating nt speeds less than one
thousand revolutions per minute with low payload.

(2) Negligible Gravity Effect: For high-speed rotating space structure, the gravity effect can
be ignored.

(3) Negligible Geometric Stiffening Effect: When rolating in plane, the magnitude of the
axial displacement is much smaller than that of the transverse displacement. The
effect of geometric stiffening is negligible.

(4) Plane Stress Condition: Since the beam is thin, the stress variation through the
thickness is negligible.

(5) Avernge Materinl Properties: The average material properties of smart beams is used.
Since the piezoelectric Milm is relatively thin, the isotropic aluminum beam plays a
dominant role in contributing to the overall beam deflection. For structural
monitoring, this assumption is valid.

p.. - P+ P,

49 A

E - El + El 1)
- 1

where A, is the cross sectional area of AL layer, A, is the cross sectional area of PVF, layer,
I, is the moment of incrtia of Aluminum layer about z axis, I,=b,h,/12, and I, is the

moment of inertia of PVF, Inyer about z axis, I,=b,h,/12. The Euler-Bernoulli beam theory
Is used for dynamic formulation.

Two coordinate systems, one being the global X-Y and the other local X-y, are

introduced to describe the dynamic system. The local enordinate system maves with the
rigid body configuration of the link. Figures 1 and 2 show the schematic of the deflected
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Figure 1: Schematic of a Figure 2:  Schematic of

deflected beam element in
local and global coordinate
axes.

rotating beam-mass system
showing local and global
coordinate axes

beam in both local and global coordinates. In classical sinall deflection beam theory, the
displacements of an arbitrary point P(U, W) on a beam can be expressed in terms of
homogenous coordinates as

100y,
ut-lo -y 1 x|{"{ - Big 2
i loooi

where x and y are the local coordinates of point P in the undeformed state. U and W are
the local coordinates of point P after deformation. u, w, and w’ are the nxial, transverse and
tangential displacements of point P, respectively. {g} is the displacement vector of point
P in homogenous coordinates. The displacement vector, {g}, can be expressed in terms of
nodal displacement vector {p} as {g} = N {p}, where {p} = ({q}7 | 1 ]V, {q} = [w, W, y,
w, w" uj]T, and N, the shape function matrix, is given as

N, N, O N, N, 0 0

MM o NMNoOO 3)
00N OONO
0 0 0 0 0 01

where the shape functions, N,, N,, N,, N, are the Hermite polynomials used for a beam
element. Ng and Ng are the shape functions for a bar elemeat in axinl londing [24]. Note
that N;' = dN/dx. These shape functions are reported as

= 1-3¢E e Xy - oA Z 1y o (X\q X
N, 13(,_) 2(L). N, X(L nh N (L)(32L)

2 @ “4)
LAPE ST - AE3), - &
N4 - T(i'l)) Ng L s N‘ (L)
Substitute the expression of {g} into equation (2) to get
(W U 1)'-B Np] (5)
and describe point P in terms of the global coordinates as
X ¥ 1T-RBNp) ©

where R is the transformation matrix that relates the local and global coordinate systems.
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R-{cosd sind Y,

)
0 o

where (x,,y,) are the coordinates of the origin of the local coordinate axis and @ is the angle
between the local and global coordinate axes,

Elemental Equation of Motion

The variational principle (Washizu, 1968) for a dynamic system and (he Lagrange
equation are used to derive (he element matrices. The firs step in the finite element
formulation is to discretize the domain of interest. The Lagrangi
of the Lagrangian of jts constituting elements. In terms of the ki
the Lagrange equation can be presented as

-y|d.on, T, L"I
Lo ).:[dt(am’ ale) ' 3(q)

- y|4met, _neT, au,]

e, 9 (8)
« tar 3{9) aq)  a(q)

-) l‘”u’”z-”"”u‘":-)d’(Mu‘Mo.)q‘xﬂ]
[

where T, and U, are the kinetic and potential energy of a beam element. Note, that for the
element connected to the payload block, T,=T, + T, T, and T,, being the kinetic energies
of the rotating beam and the tip mass attached at the end, respectively. U |s the potential
energy of the beam element, {q} and {Q,} are the generalized coordinates and forces,
respectively. The expressions of M, M, M,,, Ky M, M, Mo and Q are given below,
The detailed derivation of these matrices are reported in Lai et al, (1992).

Dy & U0 2.8 BT
7wt 0 o
a3 Bt atn
AT - P . °
$ 00
Mave V.. € H,.q )
- — -— ] —
e ¥ et ¢
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ﬁol—,l [ ]
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Ny-patd tau (10)
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a and the cross section area of the beam,

where 1 and A represent the moment of inerti
M, and Q,,, matrices are given as

respectively. The nonzero terms of My, My,
My )y, = MY - (yslaw’ - x,c00w) ‘
My sy = HJ(cd)(:foy:) - @,z o - (7,  Jooew’]
M) - M1 - o0 x slaw')}
M ey = 2M B0 com + x i) - 1]
M5y - M (0 « VIO, - 2 )l - (y, + x Jooaw'}
M, - 2801 - (rgiaw - 200w (15)
(M) - - “."“ - (ysow' - 1, coaw)) - MO - (,con «+ x3aw))
M, - M3 - ppiaw - 1000) - ML - G0 o 1 sinw))
(Qualai - Mo - (g piaw - 1,000%)] - M0 (y,co0 + 1 siaw)
Q) - “.‘“‘:"b“' 1) - Liygiaw - xcoaw))] ¢ M Ly coew + 2, 80w")
(@), - ~M B0, conv o xplaw) - ML - giaw - 2008w

Note that the system mass matrix is the sum of the mass matrices of the tip mass
and the beam element, Le, M; = My +M,,, and so on.

System Equations and FEM Solution

The system governing equation is obtained In a two-stage procedure. In the first

stage, the elemental equations of motion are generated. In the second stage, the elemental
equations are assembled into a system equation. The detailed assembly procedure was
presented by Fallahi and Lai (1992). The displacement is obtained by the integration of the
system equation. The secondary information, such as the strain, stress, and induced electric

voltage, are calculated using the result of finite element solutions.

Stress-Strain Relationship

The longitudinal strain ¢, is given as

) o 8 o o

§ 120 &« 4 ¢ I & 3
&0, &Sy g (S GP e

e Bt Ly Pl

o-L.v-pronsto . . (16)
° 0o = O ¢ -
L 3
[ ] ] ° [ ] [ ] °
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Stress at the same point can be obtained by using
a”n

o,-Eeg

Dynamic Monitoring System

_From these equations, strain and stress at any arbitrary point, p(x, y), on the beam
element are computed. The voltage, V(x,t), generated by the plezo strain is calculated by

V(X,‘) - E’(x,t).(thn) (18)

where E Is the modulus of elasticity, h is the thickness of the layers, V is the strain induced
voltage, h, is the thickness of the PVF, layer, and d,, is the appropriate piezoelectric

constant, and 7
%% e/ 19

e(x) - -

The sensor configuration used in this study is a layer of PVF,, polyvinylidene
fluoride, bonded to one side of the rotating beam. Fig. 3 shows the cross sectional view of
the beam with PVF, layer. PVF, is a polymer that can be polarized or made piezo-
electrically active through appropriate processing during manufacture (Bailey and llubbard,
1985). In its nonpolarized form, PVF, is a common electrical insulator. In it's polarized
form PVF, is esscatially a tongh, flexible piczoclectric crystal.  Polarized PVF, is
commercially available as thin polymieric film having a layer of nickel or aluminum
deposited on each face to conduct a voltage or applicd across its faces in y-direction which
results in a longitudinal strain in x-direction. This is the d,, component of the plezoelectric
activity. 1 PVF, is polarized biaxially that would strain in both the x and the z directlons.

For this study we consider uniaxial PVF; only.

Fig. 4 shows the smart beam configuration. The longitudinal strain, ¢,, is obtained
by force equilibrium in axial direction by finite element formulation. The strain, ¢, in the
PVF, layer introduce o corresponding piezo voltage to the PVF,. The combined Jynnmlc
effect of gyroscopic, coriolis and other inertia are recorded by the plezo voltage. This
voltage can be used as an monitoring index. When the index value exceeds the imposed
constraints or material’s natural constraints, the control actlon, i.e. the direct piezoelectric

effect, can be triggered to take place.

Coatrul Algorithm
The plezoelectric strain creates the net force in each layer acting as the moment arm
from the midplane of the layer to the npeutral axis of the beam, producing & bending
moment
Tt) - Epybe, [(4/2)-D] + Ehyble,e) ((hy2)+hy-D) : (20)

where b is the width of the beam, and D is the location of the neutral axis of the composite

beam given by
E,h: + E,’I: + 2R ME, (21)
2E b+ Ehy)

D -
Performing some algebraic manipulations to yleld

- ML 22)
T = -Vieh)dy (—5—) EhoERD Wz a).c
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o where c is constant for a given beam material and geomet
P per volt. If the materlal property and geometry of the composite bea
length, c is a function of x.

ry expressing the bending moment
m change along its

jonal Euler-Bernoulli beam yiclds the

Combining the above equation with a convent
of the composite beam. The governing

e ;
equations of motion for transverse vibrations, w(x,t),
equation becomes

DE F g Fw Fw
= ;;[u; - ez pA-; -0 for O<x<L (23)
and the boundary conditions are
wo - b0
249

Fw Fw
B2, - - — ¢ c.Vxt
att atax )

uz!h - M'?_"‘ih_ o e 22
ax a? ax

rea moment of inertia of the layer about the z axis, pA

' where El = EI, + E)I;, Lis thea
A Is the cross sectional area of the layer, and

Qi
= pA, + pAy p s the density of the layer,
= M, and I, the tip mass and tip inertia.
h
Wy fp mase
Tz v 1, @ twrte
= —Emﬁ@@
Ve
T .y
I B -
-y x
! E: Figure 3 - Smart beam Figure 4 - Cross sectional view of
i E- configuration smart beam
S Since our PVF, has uniform geometry and a spatially uniform voltage applied along

its length, the derivatives for the input voltage of the system becomes zero. The voltage that
rs in the boundary condition can be used to control the bending moment. The
the squares of the curvature and the velocity as

(25)

appea
functional of the system is formed by

18
1o - 3 {u% - 2y

we obtain the Euler-Lagrangian equation of motion,

Applying the first variational principle
dary conditions. Carrying out integration by parts

and both the essential and natural boun
of the first variation of the functional gives

a. }(l-ﬂ).i"_,i‘”_a M Fw i l'.,!l'_,?_!h_ . ﬂﬂ,ﬂh (26)
x 17 e and & pA & pA artax A pA O

The voltage appears only in one term. To extremize the functional, the voltage s chosen
such that it appears as negative as

V- -:gn(c.%l,).l’_- @27
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where %l‘ is the angular velocity at the tip of the beam. The control voltage is chosen

{0 generate a bending moment that opposes the angular motion at the tip of the beam. The
geometry of the plezoelectric layer can be tailored to obtain the necessary control function.

NUMERICAL EXPERIMENTS

Severnl numerical simulations are conducted to Hlustrate the effectiveness of the full
beam formulation of the beami-mass system. A beam-mass system made of rectangular
aluminum materials with an embedded PVF, layer Is used for the study. The dimensions
and material properties of the beam are given in Table 1. The beam is subjected to a spin-
up mancuver (Kane, 1985) prescribed by

0o e T 2xt .
. ?[-2-’(;‘-)1(“7 ]; 0setexT 29)
é,,(:-%'] : t>T

where éo is the steady state angular velocity. In order to characterize the dynamic

behavior of the system at different rotating speeds, we set the steady state speeds to 300, 500
and 700 rpm, and time constant, T, is [ seconds. The simulation Is carried out for a period

of § seconds.
Table 1 - Ceometric parameiers and material properties of the smart beam

Aleminum PVF, Compesite
Beam
Langth (L) 20 2 b7}
Thickness (i In) 9989 2011 1
Widih (w; () 285 28 28
i | Dermity (o5 B s2imt) 2480107 Lesx 10 | 245x10%
Young's Madulus (F; ps) 15107 29 x10% T
Static Plean-electric 2665 1e710
Connlant (dy;;inV)

Figures § and 6 shaw the transverse displacement, w, of the piezo-aluminum beam-
mass system rotating at three different speeds. The transverse tip displacement of the beam
is computed and recorded for both formulation with and without payload mass inertia.
Both of the maximum transient tip displacement and the steady-state tip deflection are
proportional to the size of the mass attachment. The contribution of gyroscopic terms is
computed and recorded in Table 2. A maximum 4.35% contribution of gyroscopic Inertia
is observed at a speed of 700 rpm. The contribution becomes significant when the mass
attachment is increased. The contribution of gyroscopic inertia becomes more pronounced
when the speed is increased.

When 10% of a equivalent beam mass is attached to the tip of the rotating beam, the
tip strain is increased at least two times. Figures 7 and 8 show the longitudinal tip strain
at three different speeds. The corresponding longitudinal stresses are presented in Figures
9 and 10. These plots are similar to those of Figures 7 and 8 with an amplification in
magnitude by the factor of an equivalent modulus of elasticity. The tip strain induced
voltage of the piezoelectric layer at three speeds are presented in Figures 11 and 12. It is
observed that the piezo voltage introduced by tip straln of no payload Is in the range of 50
to 170 volts. The piezo voltage induced by the tip strain with a 10% tip mass attachment
is in the range of 120 to 530 volts. The contribution of tip masses and speeds are
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LR experimented to allow control voltage to be adjusted to the design range. The geometric
s parameters of both aluminum beams and piezoelectric layers are design variables to be
tailored to satisfy the design need.
Table 2 - Contribution of gyroscopic terms at different speeds (*)
S Tip Mass Angular Volocity
lo Beam 300 rpm | 300 ipm T00 rpm
Aluminum 0% 0.52% 1.02% 2.08%
bsam-mass
system 10% 0.67% 1.47% 3.20%
Plezo-aluminum 0% 0.69% 1.38% 2.80%
beam-mass
system 10% 0.90% 208% 4.35%

(*) PerconTage dMarence n sTeady-state eofulion af dilferent speeds o1 Fin and M,

; 1A
] | .|/ _—

Figore 5 - Transverse tip  Flgare 7 - Axial tlp sirain, e, of  Figure 9 - Aslal tip stress, o, of
displacements, w, of plezo- plezo-uluminum beam rotuting at plezo-aluminum beam rotating &t
alumbium beam rotating at 300, 300, 500, and 700 rpm speeds of 300, 500, and 700 rpm

500 and 7080 rpm

- A~ - s .
| - | ST j-
\/:_-'* N B T R ——
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; DA N T - S

Figore 6 - Transverse tlp Figure 8 - Axial tip struly, e, of  Figare 10 - Axinl tip stress, o,, of

displacements, w, of the plezo-
sluminum heam-muss(10%)
system rotating at 300, 504, and

plc:.o—ulumlmlmhenm--muss(lo%)
sysiem rotating at 300, 500, und
700 rpm

plezo-atuminumbeam-mass(10%)
system votating at 300, 500, and
700 rpm

700 rpm
CONCLUSION

OB
Z

A systematic finite element based design mcthod Is presented in the paper. The method

1 =

; 2 allows the a high-speed rotating dynamic structure with embedded plezoclectric films to be
i designed and monitored. 'The gyroscople effect introduced by different paylond at varicus
o speeds can be taken into consideration in the early design. The result of aumcrical
I = simulations indicates that current approach can be used for application in the sensing and
L monitoring of high-speed spinning space structures and flexible mechanical systems. The

finite clement bused method Is simple und systematic. The dynamic characteristics of high
speed rotating stroctures and machinery can be observed and used in distributed parameler
odels for contrul of such systems.
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Figure 11 - Piezo voltage induced Figure 12 - Plezo voltage induced

by the tip sirain of plezo- by the tip straln of the plezo-

aluminum besm rotating at 300, saluminum beam-mass (10%)

500, and 700 rpm system rofating at 300, 500, and
700 rpm

ACKNOWLEDGEMENT

The authors gratefully acknowledge the support provided by the United States Army
Strategic Defense Command and the NASA Center for Aerospace Research at A&T.

REFERENCES
Bailey, T. and Hubbard Jr., J.E, 1985, Distribut lectric-Polymer {
Cantliever Beam, Journal of Guidance, Control and Dynamics, Vol. 8, No. 5, pp. 605-611, 1985.
Chol, 8.B., Gandhi, M.V,, and Thompson, B.S., 1989, An Active Vibration Tuning for Smert Flexible

tructu ncorporating Flectro-Rheological Flulds: A Proof-of-Concept Ivestiput Proceedings of 1989
American Control Conference.

Crawley, E.F. and deLuls, J., 1987, Use of Vi zoel ctuators as Ele ts of Intelll t
AJAA Journal, Vol. 25, No. 10, pp. 1373-1385,

Fullahl, B, Lal, 1LY. and C. Venkat, 1992, A Comparative Study of the Finite Element Assembly Procedures
Using Conventional and Modified Lagrange Fquations, Canadian Soclety of Mechanical Engineering Forum
92, '

Gandhi, M.V. and Thompson, B.S., 1989, Sma 8 (ruci ologles: Impendl
Revolution, Technomic Publishing Company, Inc., Lancaster, PA.

Gandhl, M.V, Thompson, B.S, and Chol, S.B., 1989, ew Gene of Innovative Ultra-Adv:
Inteltigent Composite Materials Featuring Electro-rheological Flulds: An Experimental Investigation, Journal
of Composite Materials.

Gandhi, M.V., Thompson, B.S., Chol, S.B. and Shakir, ., 1989, Electro-Rheological-Fluld-Based Articulating
Robotics Systems, ASME Journal of Mechanisms, Transmissions and Automation In Design.
Kane, T.R., Ryan, R.R,, Banerjee, A.K., 1985, Dynn ofa ac lovin AAS/AIAA

Astrodynamics Specialist Conference, Paper AAS 85-390, Yail, Colorado.

Lai, ILY,, Fallshi, B. and R. Gupta, 1992, Full Beam Formulation of a Rotating Laminated Beam-Mass
Sysiem, to appear in Composite Journal, Paper No. COMP/91/1008KK.

Morikaws, T, 1985, Optical Actuntors, Japanese Journal of Society Instrumentation and Control
Englneering, Vol. 24, No. 9, pp. 827-831.

Miwa, Y., 1985, Sha oty Allo licatio uential Operation C System and Control
(Japan), Vol. 29, No. 5, pp. 303-310, 1985.

Plump, J.M,, Ilubbard Jr., J.E. and Bailey, T, 1987, Nonlinear Control of A Distributed System: Slmulation

ASME Journal of Dynamlics, Measurement, and Control, Vol. 109, pp. 133-139.

Rogers, C.A. and Robertshaw, LI, 1988, Shape Memory Alloy Reinforced Composites, Englncering Science
Reprint 25, ESP25.88027, Society of Engineering Sclences Inc..

Rogowski, R.S., Heyman, J.S., and Claus, R.0., 1988, ‘The Evolution of Smart Composite Materials, NASA
Tech Rrlels, Vol. 12, No. 10, pp. 20-22.

Tzou, 11.S. and Tseng, C.1, 1990, Distributed Modal Identification and Vibration Control of Continys,

Journal of Sound and Vibration, Vol. 138, No. i, pp. 17-34.
Yaeger, J.R, 1984, Shape- ory E -mechanical Actuator, ISATA 84 Proceedings,

International Sympostum on Automotive Technology and Automatlon, Milan, Italy, Vol. 1, pp. 633-642.

"

140

R . o it L S DR . P N T



